

Data Validation (DV) Report for TESS ID 169461816 Sectors 14 - 14

This Data Validation Report was produced in the TESS Science Processing Operations Center (SPOC) Pipeline at NASA Ames Research Center

13-Sep-2019 12:17:26 Z

Contents

1	Summary	1
2	Survey Image	2
3	Flux Time Series	3
4	Dashboards	5
5	Pixel Level Diagnostics 5.1 Planet Candidate 1 5.2 Planet Candidate 2 5.3 Planet Candidate 3 5.4 Difference Image TIC Key	8 8 12 16 20
6	Phased Light Curves	22
7	Planet Candidate 17.1Model Fitter: All Transits7.2Model Fitter: Reduced Parameter Fit Results7.3Model Fitter: Trapezoidal Fit Results7.4Validation Tests7.4.1Weak Secondary Test7.4.2Eclipsing Binary Discrimination Test7.4.3Bootstrap Test7.4.4Ghost Diagnostic Test7.4.5Validation Test Figures	 29 33 35 37 37 38 38 39
8	Planet Candidate 2 8.1 Model Fitter: All Transits . 8.2 Model Fitter: Reduced Parameter Fit Results . 8.3 Model Fitter: Trapezoidal Fit Results . 8.4 Validation Tests . 8.4.1 Weak Secondary Test . 8.4.2 Eclipsing Binary Discrimination Test . 8.4.3 Bootstrap Test . 8.4.4 Ghost Diagnostic Test . 8.4.5 Validation Test Figures .	 43 43 46 48 50 50 50 51 51 52
9	Planet Candidate 3 9.1 Model Fitter: All Transits 9.2 Model Fitter: Reduced Parameter Fit Results 9.3 Model Fitter: Trapezoidal Fit Results 9.4 Validation Tests 9.4.1 Weak Secondary Test 9.4.2 Eclipsing Binary Discrimination Test 9.4.3 Bootstrap Test	56 59 61 63 63 63 64

	9.4.4 Ghost Diagnostic Test	$\begin{array}{c} 64 \\ 65 \end{array}$
Ap	ppendices	69
Α	Planet Candidate 1 A.1 Model Fitter: All Transits A.2 Model Fitter: Odd & Even Transits A.3 Eclipsing Binary Discrimination Test	69 69 71 76
в	Planet Candidate 2 B.1 Model Fitter: All Transits B.2 Model Fitter: Odd & Even Transits B.3 Eclipsing Binary Discrimination Test	77 77 79 84
С	Planet Candidate 3 C.1 Model Fitter: All Transits C.2 Model Fitter: Odd & Even Transits C.3 Eclipsing Binary Discrimination Test	85 85 87 92
D	Alerts	93

1 Summary

Target Properties	Value	Uncertainty	Units	Provenance
Catalog ID	169461816			
TOI ID	-			
TESS Name	-			
RA	297.45372285	0	degrees	TIC8
Dec	41.01100766	0	degrees	TIC8
Magnitude	10.931	0.0061		TIC8
Radius	1.491	0.067	Solar radii	TIC8
Effective Temperature	6779	106	Kelvin	TIC8
$\log(g)$	4.254	0.088433	$\rm cm/sec^2$	TIC8
[M/H]	0.081	0.0088569	Solar metallicity	TIC8
Stellar Density	0.439	0.091	Solar density	TIC8-Derived
Limb Darkening Coefficient 1	0.45874			
Limb Darkening Coefficient 2	0.51648			
Limb Darkening Coefficient 3	-0.55317			
Limb Darkening Coefficient 4	0.1846			
Number of Planet Candidates	3			
TOI Model	toi-plus-2019-08-29.csv			
TESS Names Model	-			
External TCE Model	-			
Software Revision	spoc-4.0.8-20190912			
Date Report Generated	13-Sep-2019 12:17:26 Z			

Sector	Target	Camera/	Crowding	Flux
	Table	CCD	Metric	Fraction
14	167	1:1	0.7586	0.8708

Planet Candidate	TOI ID	TESS Name	TOI Correlation	Period (days)	Period Ratio	Epoch (BTJD)	Semi-major Axis (AU)	Radius (Re)	\mathbf{Seff}	Teq (K)	False Alarm	Suspected EB
1	-	-	-	0.363	1.00	1683.603	0.01	4.5	33009.4	3438	6.19e-09	false
2	-	-	-	0.363	1.00	1683.512	0.01	4.3	33009.7	3438	6.06e-09	false
3	-	-	-	0.363	1.00	1683.693	0.01	4.7	33005.4	3438	1.36e-08	false

2 Survey Image

Declination

2 SURVEY IMAGE

Digitized Sky Survey (DSS) red image. The 5' x 5' image is centered on the J2000 coordinates of target (169461816).

3 Flux Time Series

Summary plot of sector-stitched flux time series and transits for target 169461816, marked with DV fitted epoch/period (or TPS epoch/period if fit was not successful). Transits of identified planets are labeled with epoch BTJD and orbital period. For the data of sector 14, target table 167, start BJD is 2458683. Open ./summary-plots/0000000169461816-00-flux-dv-fit-14-167.fig

Summary plot of raw flux time series. For the data of sector 14, target table 167, start BJD is 2458683. Open ./summary-plots/000000169461816-00-raw-flux-14-167.fig

4 Dashboards

Planet Candidate 1

Model Fitter	Stellar Radius 1.5 ± 0.1 Solar units Period = 0.4 ± 0.0 days Depth = 854 ± 103 ppm Planet Radius = 4.5 ± 3.8 Earth ra Semi-major Axis = 0.0 ± 0.0 AU Effective Stellar Flux = 33009.4 ± 32 Equilibrium Temperature = 3438 ± 2330 Chi-squared/DoF = 0.8 SNR = 8.8	dii 5034.4 : 131 Kelvin	Core Aperture Correlation Statistic Value = 5.85 Significance = 100.00% Halo Aperture Correlation Statistic Value = 3.79 Significance = 99.99% Core/Halo Ratio Ratio = 1.54			
Eclipsing Binary Discrimination Test	Odd-Even Depth Comparison Statistic Value = 7.09e-01 Significance = 39.97%		Offsets Relative to Out of Transit Centroid Source RA Offset = N/A Source Dec Offset = N/A Source Offset Distance = N/A Offsets Relative to TIC Position Source RA Offset = N/A Source Dec Offset = N/A Source Offset Distance = N/A	Difference Image Centroid Offsets		
	Shorter Period Comparison Statistic Value = $5.15e-09$ Significance = 0.01%	Longer Period Comparison Statistic Value = 7.72e-07 Significance = 0.07%	False Alarm = 6.19e-09 Transit Count = 74 Max Multiple Event Statistic = 7.4	Bootstrap Test		

Summary of model fitter results and validation test results for target 169461816, planet candidate 1. In general, green denotes that the candidate is likely a planet, while red denotes that the candidate is unlikely to be a planet. Cyan denotes that no data is available. The color of the Model Fitter block is: green, when the SNR of the fit is greater than or equal to 10; yellow, if the SNR is greater than or equal to 7.1 but less than 10; red, if the SNR is less than 7.1 or if the fitter failed. The color of the Ghost Diagnostic Test and Eclipsing Binary Discrimination Test blocks are: green, when the significance is within 2-sigma; yellow, when the significance is between 2- and 3-sigma; red when the significance is greater than 3-sigma. The color of the Difference Image Centroid Offsets block is: green, when the max offset distance sigma is less than or equal to 2; yellow, when the max sigma is between 2 and 3; red when the max sigma is greater than 3. The color of the Bootstrap Test block is green whenever the false alarm probability is less than 10^{-12} , low enough to limit the total number of false alarms from a four year mission to less than one. If the false alarm probability is greater than 10^{-12} , the color of the Bootstrap Test block is: green, when the false alarm probability is less than or equal to the CCDF of a Gaussian distribution at the observed maximum multiple event statistic; yellow when the false alarm probability is between 1 and 2 times that of a Gaussian distribution at the max multiple event statistic.

Model Fitter	Stellar Radius 1.5 ± 0.1 Solar units Period = 0.4 ± 0.0 days Depth = 781 ± 103 ppm Planet Radius = 4.3 ± 5.8 Earth ra Semi-major Axis = 0.0 ± 0.0 AU Effective Stellar Flux = 33009.7 ± 32 Equilibrium Temperature = $3438 \pm$ Chi-squared/DoF = 0.8 SNR = 8.2	dii 5034.4 131 Kelvin	Core Aperture Correlation Statistic Value = 6.85 Significance = 100.00% Halo Aperture Correlation Statistic Value = -0.63 Significance = 26.38% Core/Halo Ratio Ratio = -10.85		
Eclipsing Binary Discrimination Test	Odd-Even Depth Comparison Statistic Value = 3.05e-01 Significance = 58.07%		Offsets Relative to Out of Transit CentroidSource RA Offset = N/A Source Dec Offset = N/A Source Offset Distance = N/A Offsets Relative to TIC PositionSource RA Offset = N/A Source Dec Offset = N/A Source Offset Distance = N/A	Difference Image Centroid Offsets	
	Shorter Period Comparison Statistic Value = N/A Significance = N/A	Longer Period Comparison Statistic Value = 5.15e-09 Significance = 0.01%	False Alarm = 6.06e-09 Transit Count = 74 Max Multiple Event Statistic = 7.4	Bootstrap Test	

Planet Candidate 2

Summary of model fitter results and validation test results for target 169461816, planet candidate 2. In general, green denotes that the candidate is likely a planet, while red denotes that the candidate is unlikely to be a planet. Cyan denotes that no data is available. The color of the Model Fitter block is: green, when the SNR of the fit is greater than or equal to 10; yellow, if the SNR is greater than or equal to 7.1 but less than 10; red, if the SNR is less than 7.1 or if the fitter failed. The color of the Ghost Diagnostic Test and Eclipsing Binary Discrimination Test blocks are: green, when the significance is within 2-sigma; yellow, when the significance is between 2- and 3-sigma; red when the significance is greater than 3-sigma. The color of the Difference Image Centroid Offsets block is: green, when the max offset distance sigma is less than or equal to 2; yellow, when the max sigma is between 2 and 3; red when the max sigma is greater than 3. The color of the Bootstrap Test block is: green whenever the false alarm probability is less than 10^{-12} , low enough to limit the total number of false alarms from a four year mission to less than one. If the false alarm probability is greater than 10^{-12} , the color of the Bootstrap Test block is: green, when the false alarm probability is less than or equal to the CCDF of a Gaussian distribution at the observed maximum multiple event statistic; yellow when the false alarm probability is between 1 and 2 times that of a Gaussian distribution at the max multiple event statistic.

Model Fitter	Stellar Radius 1.5 ± 0.1 Solar units Period = 0.4 ± 0.0 days Depth = 886 ± 98 ppm Planet Radius = 4.7 ± 3.5 Earth ra Semi-major Axis = 0.0 ± 0.0 AU Effective Stellar Flux = 33005.4 ± 32 Equilibrium Temperature = $3438 \pm$ Chi-squared/DoF = 0.9 SNR = 10.1	dii 5033.8 131 Kelvin	Core Aperture Correlation Statistic Value = 4.72 Significance = 100.00% Halo Aperture Correlation Statistic Value = 5.44 Significance = 100.00% Core/Halo Ratio Ratio = 0.87		
Eclipsing Binary Discrimination Test	Odd-Even Depth Comparison Statistic Value = 2.52e-01 Significance = 61.60%		Offsets Relative to Out of Transit CentroidSource RA Offset = N/A Source Dec Offset = N/A Source Offset Distance = N/A Offsets Relative to TIC PositionSource RA Offset = N/A Source Dec Offset = N/A Source Offset Distance = N/A	Difference Image Centroid Offsets	
	Shorter Period Comparison Statistic Value = 7.72e-07 Significance = 0.07%	Longer Period Comparison Statistic Value = N/A Significance = N/A	False Alarm = 1.36e-08 Transit Count = 74 Max Multiple Event Statistic = 7.2	Bootstrap Test	

Planet Candidate 3

Summary of model fitter results and validation test results for target 169461816, planet candidate 3. In general, green denotes that the candidate is likely a planet, while red denotes that the candidate is unlikely to be a planet. Cyan denotes that no data is available. The color of the Model Fitter block is: green, when the SNR of the fit is greater than or equal to 10; yellow, if the SNR is greater than or equal to 7.1 but less than 10; red, if the SNR is less than 7.1 or if the fitter failed. The color of the Ghost Diagnostic Test and Eclipsing Binary Discrimination Test blocks are: green, when the significance is within 2-sigma; yellow, when the significance is between 2- and 3-sigma; red when the significance is greater than 3-sigma. The color of the Difference Image Centroid Offsets block is: green, when the max offset distance sigma is less than or equal to 2; yellow, when the max sigma is between 2 and 3; red when the max sigma is greater than 3. The color of the Bootstrap Test block is: green whenever the false alarm probability is less than 10^{-12} , low enough to limit the total number of false alarms from a four year mission to less than one. If the false alarm probability is greater than 10^{-12} , the color of the Bootstrap Test block is: green, when the false alarm probability is less than or equal to the CCDF of a Gaussian distribution at the observed maximum multiple event statistic; yellow when the false alarm probability is between 1 and 2 times that of a Gaussian distribution at the max multiple event statistic.

5 Pixel Level Diagnostics

To reduce clutter, the catalog IDs in the difference images have been replaced by indices representing distance from the target star. The mapping between the indices and the catalog IDs is found in a table at the end of this section.

5.1 Planet Candidate 1

Mean offset from the PRF fit to the out o				<u>Mean offset from</u>	n the T	C RA	and Dec
	$\mathbf{R}\mathbf{A}$	Dec	Units		$\mathbf{R}\mathbf{A}$	Dec	Units
Offset	N/A	N/A	arcseconds	Offset	N/A	N/A	arcsecond
$Offset/\sigma$	N/A	N/A		$Offset/\sigma$	N/A	N/A	
Offset Distance	N	A	arcseconds	Offset Distance	N	A	arcsecond
Offset Distance/ σ	N	A		Offset Distance/ σ	$\sim N$	A	
3σ Radius	N	A	arcseconds	3σ Radius	N	A	arcsecond

Multi-Sector Average PRF Fit of the Difference Images

Difference image centroid offsets figure for this planet candidate is not available.

Difference image centroid offsets figure on survey image for this planet candidate is not available.

Number of	Number of	Number of	Fraction of	Quality
Difference Images	Metrics	Good Metrics	Good Metrics	Threshold
N/A	N/A	N/A	N/A	N/A

Difference Image Summary Metrics

Difference Image Planet Candidate 1 / Sector 14 / Target Pixel Table 167

Difference image for target 169461816, planet candidate 1, sector 14, target pixel table 167. Upper left: difference between mean flux out-of-transit and in-transit; upper right: mean out-of-transit flux; lower left: mean in-transit flux; lower right: difference between mean flux out-of-transit and in-transit after normalizing by the uncertainty in the difference for each pixel. The optimal aperture is outlined with a white dash-dotted line in each panel and the target mask is outlined with a solid white line. Symbol key: x: target position from TIC RA and Dec converted to CCD coordinates via motion polynomials; *: position of nearby TIC objects converted to CCD coordinates via motion polynomials; +: PRF-fit location of target from out-of-transit image; triangle: PRF-fit location of transit source from the difference image. Number of transits = 50; number of valid in-transit cadences = 798; number of in-transit cadence gaps = 5; number of valid out-of-transit cadences = 2346; number of out-of-transit cadence gaps = 22. Difference image quality metric = N/A. Transits used to compute this difference image are overlapped by those of other candidates on this target. Open ./planet-01/difference-image/0000000169461816-01-difference-image-14-167.fig

PRF Fit of the Difference Image

The out of transit image centroid and difference image centroid could not be calculated for target 169461816, planet candidate 1, in target table 167.

5 PIXEL LEVEL DIAGNOSTICS

5.2 Planet Candidate 2

	wiean onset nom	the L	<u>IC RA</u>	and Dec
Units		$\mathbf{R}\mathbf{A}$	Dec	Units
arcseconds	Offset	N/A	N/A	arcseconds
-	$Offset/\sigma$	N/A	N/A	
arcseconds	Offset Distance	N	T/A	arcseconds
	Offset Distance/ σ	N	A	
arcseconds	3σ Radius	N	A	arcseconds
A A	cUnitsAarcsecondsAarcsecondsarcsecondsarcseconds	c Units A arcseconds A Offset A Offset/ σ arcsecondsOffset Distancearcseconds 3σ Radius	c UnitsRA A arcsecondsOffset N/A A Offset/ σ N/A A Offset Distance N A offset Distance/ σ N A 3σ Radius N	\mathbf{A} UnitsRADec A arcsecondsOffset N/A N/A A arcsecondsOffset Distance N/A N/A A arcseconds 3σ Radius N/A

Multi-Sector Average PRF Fit of the Difference Images

Difference image centroid offsets figure for this planet candidate is not available.

Difference image centroid offsets figure on survey image for this planet candidate is not available.

Number of	Number of	Number of	Fraction of	Quality
Difference Images	Metrics	Good Metrics	Good Metrics	Threshold
N/A	N/A	N/A	N/A	N/A

Difference Image Summary Metrics

Difference Image Planet Candidate 2 / Sector 14 / Target Pixel Table 167

Difference image for target 169461816, planet candidate 2, sector 14, target pixel table 167. Upper left: difference between mean flux out-of-transit and in-transit; upper right: mean out-of-transit flux; lower left: mean in-transit flux; lower right: difference between mean flux out-of-transit and in-transit after normalizing by the uncertainty in the difference for each pixel. The optimal aperture is outlined with a white dash-dotted line in each panel and the target mask is outlined with a solid white line. Symbol key: x: target position from TIC RA and Dec converted to CCD coordinates via motion polynomials; *: position of nearby TIC objects converted to CCD coordinates via motion polynomials; +: PRF-fit location of target from out-of-transit image; triangle: PRF-fit location of transit source from the difference image. Number of transits = 51; number of valid in-transit cadences = 760; number of in-transit cadence gaps = 1; number of valid out-of-transit cadences = 2255; number of out-of-transit cadence gaps = 22. Difference image quality metric = N/A. Transits used to compute this difference image are overlapped by those of other candidates on this target. Open ./planet-02/difference-image/0000000169461816-02-difference-image-14-167.fig

PRF Fit of the Difference Image

The out of transit image centroid and difference image centroid could not be calculated for target 169461816, planet candidate 2, in target table 167.

5 PIXEL LEVEL DIAGNOSTICS

5.3 Planet Candidate 3

Mean offset from the PRF fit to the out of			<u>Mean offset from</u>	the T	C RA	and Dec
$\mathbf{R}\mathbf{A}$	Dec	Units		$\mathbf{R}\mathbf{A}$	Dec	Units
N/A	N/A	arcseconds	Offset	N/A	N/A	arcsecon
N/A	N/A		$Offset/\sigma$	N/A	N/A	
N	A	arcseconds	Offset Distance	N	/A	arcsecond
N	A		Offset Distance/ σ	N	A	
N	A	arcseconds	3σ Radius	N	A	arcsecond
	the PH RA N/A N/A N/A	the PRF fit fit <th< td=""><td>the PRF fit to the out of transit imageRADecUnits$N/A$$N/A$arcseconds$N/A$$N/A$arcseconds$N/A$$N/A$arcseconds$N/A$$N/A$arcseconds$N/A$$N/A$arcseconds</td><td>the PRF fit to the out of transit imageMean offset fromRADecUnits$N/A$$N/A$$N/A$$N/A$$N/A$$N/A$$N/A$arcseconds$N/A$Offset$N/A$Offset Distance$N/A$$N/A$$N/A$$3\sigma$ Radius</td><td>Mean offset from the TIRADecUnitsRA$N/A$$N/A$arcsecondsOffset$N/A$$N/A$$N/A$$N/A$Offset/$\sigma$$N/A$$N/A$$N/A$$N/A$Offset Distance$N$$N/A$</td><td>Mean offset from the TIC RARADecUnitsRADec$N/A$$N/A$arcsecondsOffset$N/A$$N/A$$N/A$$N/A$arcsecondsOffset Distance$N/A$$N/A$$N/A$arcseconds$N/A$$N/A$$N/A$$N/A$$N/A$$N/A$$N/A$$N/A$$N/A$$N/A$$N/A$$N/A$$N/A$$N/A$$N/A$$N/A$</td></th<>	the PRF fit to the out of transit imageRADecUnits N/A N/A arcseconds	the PRF fit to the out of transit imageMean offset fromRADecUnits N/A N/A N/A N/A N/A N/A N/A arcseconds N/A Offset N/A Offset Distance N/A N/A N/A 3σ Radius	Mean offset from the TIRADecUnitsRA N/A N/A arcsecondsOffset N/A N/A N/A N/A Offset/ σ N/A N/A N/A N/A Offset Distance N N/A	Mean offset from the TIC RARADecUnitsRADec N/A N/A arcsecondsOffset N/A N/A N/A N/A arcsecondsOffset Distance N/A N/A N/A arcseconds N/A

Multi-Sector Average PRF Fit of the Difference Images

Difference image centroid offsets figure for this planet candidate is not available.

Difference image centroid offsets figure on survey image for this planet candidate is not available.

Number of	Number of	Number of	Fraction of	Quality
Difference Images	Metrics	Good Metrics	Good Metrics	Threshold
N/A	N/A	N/A	N/A	N/A

Difference Image Summary Metrics

Difference Image Planet Candidate 3 / Sector 14 / Target Pixel Table 167

Difference image for target 169461816, planet candidate 3, sector 14, target pixel table 167. Upper left: difference between mean flux out-of-transit and in-transit; upper right: mean out-of-transit flux; lower left: mean in-transit flux; lower right: difference between mean flux out-of-transit and in-transit after normalizing by the uncertainty in the difference for each pixel. The optimal aperture is outlined with a white dash-dotted line in each panel and the target mask is outlined with a solid white line. Symbol key: x: target position from TIC RA and Dec converted to CCD coordinates via motion polynomials; *: position of nearby TIC objects converted to CCD coordinates via motion polynomials; +: PRF-fit location of target from out-of-transit image; triangle: PRF-fit location of transit cadences = 764; number of in-transit cadence gaps = 6; number of valid out-of-transit cadences = 2308; number of out-of-transit cadence gaps = 4. Difference image quality metric = N/A. Transits used to compute this difference image are overlapped by those of other candidates on this target. Open ./planet-03/difference-image/0000000169461816-03-difference-image-14-167.fig

PRF Fit of the Difference Image

The out of transit image centroid and difference image centroid could not be calculated for target 169461816, planet candidate 3, in target table 167.

5.4 Difference Image TIC Key

Index	Catalog ID	Mag	RA (degrees)	Dec (degrees)	Distance (arcsec)
1	160461916	10 021	207 45274477	41.01102178	0.00
1	160461804	15 052	297.45374477	41.01102178	0.00
2	1870046763	20 500	297.45409590	41.00309071	10.07
3	1879940705	20.300 20.341	297.45345501	41.00799243	10.94
5	1879940705	20.341	297.45440785	41.01440232	12.50
6	1879946767	10 501	297.45025405	41.010000	15.03
7	1879946764	20.614	297.40921602	41.01/17008	15.05
8	160/61803	15.677	297.44991080	41.01417008	16.82
0	1870046766	10.851	297.45327617	41.00778031	10.82
9 10	160461807	17.001 17.064	297.45057017	41.01550017	17.81
10	1870046757	10.229	297.40970902	41.00001473	10.57
10	160461826	15 228	297.40094838	41.01170703	21.10
12	1870046753	10.220	297.44087444	41.01580809	21.19 21.54
10	1879940755	19.930	297.45147109	41.00528907	21.04 21.02
14	160461828	15.000	291.40910120	41.01505701	21.92
10	160461705	16 579	297.44983033	41.01038703	22.00
10	109401795	10.072	297.44749729	41.00706304	22.11
10	160461912	19.720	297.40100010	41.00952745	22.00
10	109401013	20 556	297.44506429	41.01059556	23.30
19	1079940773	20.000	297.40214069	41.01207023	25.50
20	160461791	19.005	297.45420102	41.01012030	25.02
21	109401781	18.090	297.44987048	41.00419900	20.72
22	1079940759	20.206	291.40002000	41.01000099	27.01
20	1879940774	20.390	297.40088500	41.01774077	31.03 21.02
24	1879940773	20.142	297.44610400	41.01001700	31.03 21.54
20	160461774	17.000	297.44089373	41.00595002	31.04 22.05
20	109401774	11.200 10.471	297.40054705	41.00334320	
21	1879940001	19.471	297.40200204	41.00407736	00.29 00.29
20	1879940790	20.765	297.44170401	41.01201904	00.04 24 57
29	160461205	19.000	297.40020045	41.01299234	04.07 25.42
30 21	1870046668	10.042	297.44121204	41.00629230 41.01251287	35.43 25.76
20	1879940008	19.000	297.40048721	41.01051587	36.00
32	18700/6759	20.360	291.40042921	41.01900079	36.47
34	160/618//	20.000	297.44200030	41.000229000	30.47
94 25	160461767	10.000 10.225	291.44002000	41.01900400	30.49 27 44
30 26	109401707	10.330 17 115	291.40000100	41.00002239	07.44 27.51
30 27	109401004	10 206	291.40429180	41.02140294	37.31 27.02
31 20	10/9940/01	10.380	297.40127930	41.02139290	37.93
38	18/9940///	18.105	297.45431237	41.02163299	38.23

Index	Catalog ID	Mag	RA	Dec	Distance	
			(degrees)	(degrees)	(arcsec)	
39	1879946804	19.264	297.44632184	41.02006690	38.30	
40	1879946770	20.155	297.45549008	41.02170346	38.75	
41	1879946751	19.906	297.43965610	41.00786504	39.92	
42	1879946741	17.868	297.44226872	41.00403988	40.05	
43	169461772	17.243	297.44395590	41.00267276	40.13	
44	1879946756	18.548	297.44141856	41.00468704	40.51	
45	169461762	15.641	297.45502130	40.99979700	40.56	
46	169461840	17.067	297.46601284	41.01750704	40.69	
47	1879946769	18.870	297.45110875	41.02219508	40.86	
48	1879946656	18.886	297.46766705	41.00648987	41.19	
49	1879946771	19.253	297.45560989	41.02247656	41.55	
50	1879946750	19.717	297.44157766	41.00351703	42.69	
51	1879946742	18.461	297.44021259	41.00495815	42.75	
52	1879946663	19.637	297.46676979	41.00416677	43.14	
53	1879946652	17.158	297.45531131	40.99893632	43.72	
54	1879946762	18.069	297.45549530	41.02310785	43.77	
55	169461806	15.677	297.46949460	41.00824402	43.94	
56	1879946780	17.879	297.43943299	41.01696260	44.37	
57	1879946665	17.185	297.46993307	41.00877545	44.71	
58	1879946776	20.441	297.45183877	41.02338379	44.80	
59	1879946660	18.676	297.46490925	41.00161489	45.46	
60	1879946781	18.754	297.43804281	41.01575979	45.94	
61	1879946749	20.573	297.44311070	41.00109228	45.96	
62	1879946803	19.152	297.44374433	41.02155939	46.66	
63	1879946738	19.169	297.44698073	40.99908890	46.72	
64	1879946816	19.117	297.46657431	41.01980544	47.06	
65	1879946716	19.494	297.47066578	41.01428594	47.44	
66	1879946802	19.305	297.44066809	41.02007035	48.20	
67	1879946739	19.673	297.44446447	40.99955458	48.37	
68	169461869	13.491	297.44495559	41.02286868	48.88	
69	1879946714	20.301	297.47189240	41.00923964	49.71	
70	169461817	18.229	297.47207527	41.01180461	49.87	
71	1879946788	19.245	297.43595167	41.01490673	50.32	
72	1879946748	20.208	297.44523213	40.99856095	50.47	
73	1879946824	19.491	297.46934130	41.01867190	50.53	
74	1879946805	18.960	297.44573485	41.02384355	51.03	
75	169461866	17.669	297.44171374	41.02198691	51.25	
76	169461835	17.759	297.43560602	41.01516777	51.48	

RA, Dec and Distances are corrected for proper motion. This table may not contain all of the objects shown.

6 Phased Light Curves

Phased unwhitened flux time series is plotted in black dots. When all transits fit completed with full or secondary convergence, the phase is determined with the fitted epoch and period; otherwise, the phase is determined with the TPS epoch and period. The values of the phased unwhitened flux time series averaged in one cadence wide bins are plotted in bigger blue dots. When all transits fit completes with full or secondary convergence, the averaged values of the phased unwhitened fitted model light curve are plotted in red dots. Transit event markers in different colors indicate the locations of the transits of all planet candidates. The transits of the same planet candidate are labeled with the markers of the same color, for example, blue markers for transits of plane candidate #1, red markers for transits of planet candidate #2, etc.

Open ./summary-plots/000000169461816-01-phased-unwhitened-flux-time-series.fig

Phased unwhitened flux time series is plotted in black dots. When all transits fit completed with full or secondary convergence, the phase is determined with the fitted epoch and period; otherwise, the phase is determined with the TPS epoch and period. The values of the phased unwhitened flux time series averaged in one cadence wide bins are plotted in bigger blue dots. When all transits fit completes with full or secondary convergence, the averaged values of the phased unwhitened fitted model light curve are plotted in red dots. Transit event markers in different colors indicate the locations of the transits of all planet candidates. The transits of the same planet candidate are labeled with the markers of the same color, for example, blue markers for transits of plane candidate #1, red markers for transits of planet candidate #2, etc.

Open ./summary-plots/0000000169461816-03-phased-unwhitened-flux-time-series.fig

Phased whitened flux time series is plotted in black dots. When all transits fit completed with full or secondary convergence, the phase is determined with the fitted epoch and period; otherwise, the phase is determined with the TPS epoch and period. The values of the phased whitened flux time series averaged in one cadence wide bins are plotted in bigger blue dots. When all transits fit completes with full or secondary convergence, the averaged values of the phased whitened fitted model light curve are plotted in red dots. Transit event markers in different colors indicate the locations of the transits of all planet candidates. The transits of the same planet candidate are labeled with the markers of the same color, for example, blue markers for transits of plane candidate #1, red markers for transits of planet candidate #2, etc. Open ./summary-plots/0000000169461816-01-phased-whitened-flux-time-series.fig

Phased whitened flux time series is plotted in black dots. When all transits fit completed with full or secondary convergence, the phase is determined with the fitted epoch and period; otherwise, the phase is determined with the TPS epoch and period. The values of the phased whitened flux time series averaged in one cadence wide bins are plotted in bigger blue dots. When all transits fit completes with full or secondary convergence, the averaged values of the phased whitened fitted model light curve are plotted in red dots. Transit event markers in different colors indicate the locations of the transits of all planet candidates. The transits of the same planet candidate are labeled with the markers of the same color, for example, blue markers for transits of plane candidate #1, red markers for transits of planet candidate #2, etc. Open ./summary-plots/0000000169461816-03-phased-whitened-flux-time-series.fig

Planet: 1 Phased Unwhitened Flux Time Series by Sector

Phased unwhitened flux time series by sector for target 169461816, planet candidate 1. Period = 0.36308 days; transit epoch = 1683.6028 BTJD. Open ./summary-plots/0000000169461816-01-phased-unwhitened-flux-time-series-by-sector.fig

Planet: 2 Phased Unwhitened Flux Time Series by Sector

Phased unwhitened flux time series by sector for target 169461816, planet candidate 2. Period = 0.36308 days; transit epoch = 1683.5115 BTJD. Open ./summary-plots/0000000169461816-02-phased-unwhitened-flux-time-series-by-sector.fig

Planet: 3 Phased Unwhitened Flux Time Series by Sector

Phased unwhitened flux time series by sector for target 169461816, planet candidate 3. Period = 0.36312 days; transit epoch = 1683.6927 BTJD. Open ./summary-plots/000000169461816-03-phased-unwhitened-flux-time-series-by-sector.fig

7 Planet Candidate 1

7.1 Model Fitter: All Transits

Model Characteristic	Name					
Transit Model	mandel-agol_geom	etric_transit_mo	del			
Limb Darkening Model	claret_tess_nonline	ar_limb_darkeni	ng_model			
TCE Parameter		Value	Units			
Trial Transit Pulse Durat	0.5	hours				
Transit Epoch	1683.6025362	TJD				
Orbital Period	0.3629928	days				
Maximum SES		3.6				
Maximum MES		7.4				
Robust Statistic	7.9					
Chi Square Goodness of H	599.9(752)					
Chi Square2 Statistic (Do	oF)	25.7(55.3)				
Threshold for Desired PE						

DoF: Degrees of Freedom

Parameter	Value	Uncertainty	Units
SNR	8.8		
Orbital Period	0.3630828	3.1646e-05	days
Transit Epoch	1683.6028467	1.0307 e-03	BTJD
Impact Parameter	0.4581	$1.0301e{+}01$	
Planet Radius to Star Radius Ratio	0.0279149	2.3385e-02	
Semi-major Axis to Star Radius Ratio	3.9526	$2.1991e{+}01$	
Planet Radius	4.5442	3.8123e + 00	Earth radii
Semi-major Axis	0.0113	8.3761e-04	AU
Effective Stellar Flux	33009.3911	5.0344e + 03	Goldilocks
Equilibrium Temperature	3438	1.3108e + 02	Kelvin
Stellar Density	6.2933	1.0504e + 02	Solar density
Transit Depth	854	1.0338e + 02	ppm
Transit Duration	0.6562	2.7122e-01	hours
Transit Ingress Duration	0.0228	2.9072e-01	hours
Eccentricity	0.0000	0.0000e+00	
Peri Longitude	0.0000	0.0000e+00	degrees
Model Chi Square Statistic (DoF)	4560.0(5652.2)		
Model Chi Square Goodness of Fit Statistic (DoF)	712.2(1244)		
Model Chi Square2 Statistic (DoF)	17.4(53)		

DoF: Degrees of Freedom

Flux time series for CatId 169461816, Planet candidate 1 in the unwhitened domain. For the data of Sector-14/TargetTableId-167, start BJD is 2458683. Transit event markers indicate the location of transits of the given planet candidate. All transits fit completed with full convergence. Open ./planet-01/planet-search-and-model-fitting-results/all-transits-fit/000000169461816-01-all-unwhitened-14-167.fig

Folded flux time series for CatId 169461816, Planet candidate 1 in the whitened domain is plotted in black dots. Values are averaged into 1 cadence wide bins. The blue dots represent the averaged values of the folded flux time series; the red dots represent the averaged values of the folded model light curve of the all transits fit; the green dots are the averaged folded fit residuals, vertically offset for clarity. All transits fit completed with full convergence.

 $Open \ ./\texttt{planet-01/planet-search-and-model-fitting-results/all-transits-fit/0000000169461816-01-all-whitened.fig}$

Folded flux time series for CatId 169461816, Planet candidate 1 in the whitened domain, zoomed on the transit. The flux data whose robust weights are larger/smaller than 0.1 are plotted in dark green/cyan dots, respectively. Values are averaged into 1 cadence wide bins. The blue dots represent the averaged values of the folded flux

time series; the red dots represent the averaged values of the fitted model light curve of the all transits fit; the green dots are the averaged folded fit residuals, vertically offset for clarity. Magenta dots are the averaged values of the folded flux time series, with a phase shift of 0.5 relative to the blue dots, vertically offset for clarity. All transits fit completed with full convergence.

Open ./planet-01/planet-search-and-model-fitting-results/all-transits-fit/0000000169461816-01-all-whitened-zoomed.fig

Impact	SNR	Model	Planet Radius	Uncert	Semi-major Axis	Uncert	Transit	Uncert	Transit	Uncert
Parameter		Chi Square	to Star Radius		to Star Radius		\mathbf{Depth}		Duration	
							(ppm)		(hours)	
0.10	9.5	5031.4	0.0284500	1.6251e-03	4.7377	3.3656e-01	916	1.0400e+02	0.6042	4.3386e-02
0.30	9.5	5033.4	0.0286198	1.6363e-03	4.5392	3.2411e-01	916	1.0408e+02	0.6074	4.4004 e-02
0.50	9.5	5028.3	0.0288555	1.6669e-03	4.0339	3.0325e-01	906	1.0404e + 02	0.6285	4.8480e-02
0.70	9.4	5046.3	0.0291626	1.6378e-03	3.2317	1.8713e-01	877	$9.7950e{+}01$	0.6698	4.1060e-02
0.90	9.2	5031.0	0.0333355	2.0571e-03	2.8880	2.3366e-01	1001	1.2242e + 02	0.5161	4.5519e-02

7.2 Model Fitter: Reduced Parameter Fit Results

Highlighted row is the best reduced-parameter model fit.

Model chi squares of reduced parameter fits vs. impact parameter for CatId 169461816, Planet candidate 1. The fit result with the minimum chi square is marked with a dashed line in the plot.

Open ./planet-01/planet-search-and-model-fitting-results/reduced-parameter-fits/0000000169461816-01-reduced-fits-chi-square.fig

Ratios of planet radius to star radius of reduced parameter fits vs. impact parameter for CatId 169461816, Planet candidate 1. The fit result with the minimum chi square is marked with a dashed line in the plot.

```
Open ./planet-01/planet-search-and-model-fitting-results/reduced-parameter-fits/0000000169461816-01-reduced-fits-rp-over-rstar.fig
```


Ratios of semimajor axis to star radius of reduced parameter fits vs. impact parameter for CatId 169461816, Planet candidate 1. The fit result with the minimum chi square is marked with a dashed line in the plot.

Open ./planet-01/planet-search-and-model-fitting-results/reduced-parameter-fits/0000000169461816-01-reduced-fits-a-over-rstar.fig

7.3 Model Fitter: Trapezoidal Fit Results

Model Characteristic Name

Transit Modeltrapezoidal_modelLimb Darkening Model

TCE Parameter Units Value Trial Transit Pulse Duration 0.5hours Transit Epoch 1683.6025362TJD Orbital Period 0.3629928 days Maximum SES 3.6Maximum MES 7.4Robust Statistic 7.9Chi Square Goodness of Fit Statistic (DoF) 599.9 (752) Chi Square2 Statistic (DoF) 25.7(55.3)Threshold for Desired PFA

DoF: Degrees of Freedom

Parameter	Value	Uncertainty	Units
SNR	14.4		
Orbital Period	0.3629928		days
Transit Epoch	1683.6091399		BTJD
Transit Depth	905		ppm
Transit Duration	0.7114		hours
Transit Ingress Duration	0.0033		hours
Model Chi Square Statistic (DoF)	13535.4(6283)		

DoF: Degrees of Freedom

Folded detrended flux time series for CatId 169461816, Planet candidate 1 and folded trapezoidal model light curve. Open ./planet-01/planet-search-and-model-fitting-results/trapezoidal-model-fit/0000000169461816-01-all-trapezoidal.fig

Zoomed folded detrended flux time series for CatId 169461816, Planet candidate 1 and folded trapezoidal model light curve. Open ./planet-01/planet-search-and-model-fitting-results/trapezoidal-model-fit/0000000169461816-01-all-trapezoidal-zoomed.fig

7.4 Validation Tests

The Centroid Test and Eclipsing Binary Discrimination Test are chi-squared hypothesis tests. For these tests, a significance of 100% favors a planet, while 0% indicates an unlikely planet.

7.4.1 Weak Secondary Test

Result	Value	Uncertainty	Units	Statistic in Sigmas	Significance (%)
Orbital Period	0.36299		days		
Transit Duration	0.5		hours		
Maximum MES	7.4				
Secondary Phase	0.27028		days		
Secondary MES	7.6				
Minimum Phase	0.13695		days		
Minimum MES	-4.8				
Median MES	-0.4				
MAD MES	2.708				
Robust Statistic	7.0				
Secondary Depth	854.5	1.0656e + 02	ppm		
Geometric Albedo	2.9	4.8922e + 00		0.3888	34.87
Planet Effective Temperature	6937	$2.9159e{+}03$	Kelvin	1.1990	11.53

7.4.2 Eclipsing Binary Discrimination Test

Result	Value	Value in Sigmas	Significance (%)
Odd Even Transit Depth Comparison Statistic	7.0908e-01	0.8421	39.97
Shorter Period Comparison Statistic	5.1475e-09	0.0001	0.01
Longer Period Comparison Statistic	7.7160e-07	0.0009	0.07

7.4.3 Bootstrap Test

Result	Value
False Alarm Probability	6.1924 e- 09
Bootstrap Threshold for Desired PFA	9.1
MES Mean	0.19
MES Standard Deviation	1.26
Transit Count	74

7.4.4 Ghost Diagnostic Test

Result	Value	Significance (%)
Maximum MES	7.4	
SNR	8.8	
Core Aperture Statistic	5.8466e + 00	100.00
Halo Aperture Statistic	$3.7879e{+}00$	99.99
Ratio of Core/Halo Aperture Statistics	$1.5435e{+}00$	

7.4.5 Validation Test Figures

The primary event has been set to zero and both the max and min of the resulting MES vs. Phase are marked with a red star. The best matched pulse duration in hours is 0.5. The maximum secondary MES and corresponding phase are 7.6367 and 0.27028 days respectively. The minimum secondary MES and corresponding phase are -4.766 and 0.13695 days respectively.

Open ./planet-01/report-summary/0000000169461816-01-weak-secondary-diagnostic.fig

Bootstrap results for target 169461816, planet 1. Cumulative sum of the probabilities (derived from the histogram of counts) from upper tail to the search transit threshold; false alarm probability is indicated by the star. The Gaussian equivalent threshold for this false alarm probability is 5.6943. The threshold on this distribution that achieves the same false alarm rate as a 7.1 sigma threshold on a Gaussian distribution is 9.1178. Open ./planet-01/bootstrap-results/0000000169461816-01-bootstrap-false-alarm.fig

Optical ghost diagnostic core aperture flux time series for target 169461816, planet candidate 1. The unwhitened time series is phase folded at the orbital period associated with the planet candidate and centered on the epoch of the first transit. The time series was first corrended against spacecraft engineering data, motion proxies, and/or cotrending basis vectors (CBVs) to remove systematic effects. Flux time series data represent the mean per pixel flux in the core or haloaperture; phase folded data points are shown in the figure with black dots. Binned and averaged phase folded flux values are marked with filled blue circles. The unwhitened transit model light curve is displayed in the figure with a red line. The value and significance of the core aperture correlation statistic are displayed in the figure title if the statistic was successfully computed.

Open ./planet-01/ghost-diagnostic-results/000000169461816-01-core-unwhitened-cotrended-zoomed-model.fig

Planet 1 : Cotrended Folded Halo Aperture Flux Time Series Correlation Statistic = 3.79, Significance = 99.99%

Optical ghost diagnostic halo aperture flux time series for target 169461816, planet candidate 1. The unwhitened time series is phase folded at the orbital period associated with the planet candidate and centered on the epoch of the first transit. The time series was first corrended against spacecraft engineering data, motion proxies, and/or cotrending basis vectors (CBVs) to remove systematic effects. Flux time series data represent the mean per pixel flux in the core or haloaperture; phase folded data points are shown in the figure with black dots. Binned and averaged phase folded flux values are marked with filled blue circles. The unwhitened transit model light curve is displayed in the figure with a red line. The value and significance of the halo aperture correlation statistic are displayed in the figure title if the statistic was successfully computed.

Open ./planet-01/ghost-diagnostic-results/000000169461816-01-halo-unwhitened-cotrended-zoomed-model.fig

8 Planet Candidate 2

8.1 Model Fitter: All Transits

Model Characteristic	Name					
Transit Model	mandel-agol_geom	mandel-agol_geometric_transit_model				
Limb Darkening Model	claret_tess_nonline	ar_limb_darkenii	ng_model			
TCE Parameter		Value	Units			
Trial Transit Pulse Durat	ion	0.5	hours			
Transit Epoch		1683.5067029	TJD			
Orbital Period		0.3631054	days			
Maximum SES		3.9				
Maximum MES		7.4				
Robust Statistic		7.6				
Chi Square Goodness of H	Fit Statistic (DoF)	668.5(733)				
Chi Square2 Statistic (Do	F)	47.5(53.4)				
Threshold for Desired PF	Δ	· · · · ·				

DoF: Degrees of Freedom

Parameter	Value	Uncertainty	Units
SNR	8.2		
Orbital Period	0.3630802	3.4003e-05	days
Transit Epoch	1683.5115284	1.1001e-03	BTJD
Impact Parameter	0.0100	9.6485e + 02	
Planet Radius to Star Radius Ratio	0.0262550	3.5794e-02	
Semi-major Axis to Star Radius Ratio	4.6952	$4.3055e{+}01$	
Planet Radius	4.2740	5.8300e + 00	Earth radii
Semi-major Axis	0.0113	8.3760e-04	AU
Effective Stellar Flux	33009.7161	5.0344e + 03	Goldilocks
Equilibrium Temperature	3438	1.3108e + 02	Kelvin
Stellar Density	10.5487	2.9019e + 02	Solar density
Transit Depth	781	1.0284e + 02	ppm
Transit Duration	0.6112	3.0187e-01	hours
Transit Ingress Duration	0.0159	3.2740e-01	hours
Eccentricity	0.0000	0.0000e+00	
Peri Longitude	0.0000	0.0000e+00	degrees
Model Chi Square Statistic (DoF)	3268.3 (3883.2)		
Model Chi Square Goodness of Fit Statistic (DoF)	667.0(1104)		
Model Chi Square2 Statistic (DoF)	35.1(50)		

DoF: Degrees of Freedom

Flux time series for CatId 169461816, Planet candidate 2 in the unwhitened domain. For the data of Sector-14/TargetTableId-167, start BJD is 2458683. Transit event markers indicate the location of transits of the given planet candidate. All transits fit completed with full convergence. Open ./planet-02/planet-search-and-model-fitting-results/all-transits-fit/0000000169461816-02-all-unwhitened-14-167.fig

Folded flux time series for CatId 169461816, Planet candidate 2 in the whitened domain is plotted in black dots. Values are averaged into 1 cadence wide bins. The blue dots represent the averaged values of the folded flux time series; the red dots represent the averaged values of the folded model light curve of the all transits fit; the green dots are the averaged folded fit residuals, vertically offset for clarity. All transits fit completed with full convergence.

 $Open \ ./planet-02/planet-search-and-model-fitting-results/all-transits-fit/0000000169461816-02-all-whitened.fig \ ...$

Folded flux time series for CatId 169461816, Planet candidate 2 in the whitened domain, zoomed on the transit. The flux data whose robust weights are larger/smaller than 0.1 are plotted in dark green/cyan dots, respectively. Values are averaged into 1 cadence wide bins. The blue dots represent the averaged values of the folded flux time series; the red dots represent the averaged values of the fitted model light curve of the all transits fit; the green dots are the averaged folded fit residuals, vertically offset for clarity. Magenta dots are the averaged values of the folded flux time series, with a phase shift of 0.5 relative to the blue dots, vertically offset for clarity. All transits fit completed with full convergence.

 $Open \ ./planet-02/planet-search-and-model-fitting-results/all-transits-fit/000000169461816-02-all-whitened-zoomed.fig \ ... and \ ...$

Impact	SNR	Model	Planet Radius	Uncert	Semi-major Axis	Uncert	Transit	Uncert	Transit	Uncert
Parameter		Chi Square	to Star Radius		to Star Radius		\mathbf{Depth}		Duration	
_							(ppm)		(hours)	
0.10	8.7	4219.5	0.0267219	1.6942e-03	4.9402	3.7074e-01	808	1.0181e+02	0.5781	4.3784e-02
0.30	8.6	4223.9	0.0266540	1.7598e-03	4.7206	3.8175e-01	794	1.0423e+02	0.5825	4.7711e-02
0.50	8.5	4224.0	0.0268843	1.7726e-03	4.2440	3.3477e-01	786	1.0306e+02	0.5950	4.7985e-02
0.70	8.6	4224.6	0.0277115	1.8335e-03	3.5661	2.7862e-01	792	1.0413e+02	0.6017	4.9160e-02
0.90	8.7	4225.7	0.0298292	1.9243e-03	2.3173	1.5893e-01	803	1.0279e + 02	0.6564	5.2728e-02

8.2 Model Fitter: Reduced Parameter Fit Results

Highlighted row is the best reduced-parameter model fit.

Model chi squares of reduced parameter fits vs. impact parameter for CatId 169461816, Planet candidate 2. The fit result with the minimum chi square is marked with a dashed line in the plot.

Open ./planet-02/planet-search-and-model-fitting-results/reduced-parameter-fits/0000000169461816-02-reduced-fits-chi-square.fig

Ratios of planet radius to star radius of reduced parameter fits vs. impact parameter for CatId 169461816, Planet candidate 2. The fit result with the minimum chi square is marked with a dashed line in the plot.

Open ./planet-02/planet-search-and-model-fitting-results/reduced-parameter-fits/0000000169461816-02-reduced-fits-rp-over-rstar.fig

Ratios of semimajor axis to star radius of reduced parameter fits vs. impact parameter for CatId 169461816, Planet candidate 2. The fit result with the minimum chi square is marked with a dashed line in the plot.

Open ./planet-02/planet-search-and-model-fitting-results/reduced-parameter-fits/0000000169461816-02-reduced-fits-a-over-rstar.fig

8.3 Model Fitter: Trapezoidal Fit Results

Model Characteristic Name

Transit Modeltrapezoidal_modelLimb Darkening Model

TCE Parameter	Value	Units
Trial Transit Pulse Duration	0.5	hours
Transit Epoch	1683.5067029	TJD
Orbital Period	0.3631054	days
Maximum SES	3.9	
Maximum MES	7.4	
Robust Statistic	7.6	
Chi Square Goodness of Fit Statistic (DoF)	668.5(733)	
Chi Square2 Statistic (DoF)	47.5(53.4)	
Threshold for Desired PFA		

DoF: Degrees of Freedom

Parameter	Value	Uncertainty	Units
SNR	12.0		
Orbital Period	0.3631054		days
Transit Epoch	1683.5121974		BTJD
Transit Depth	915		ppm
Transit Duration	0.8734		hours
Transit Ingress Duration	0.2340		hours
Model Chi Square Statistic (DoF)	9934.7 (4523)		

DoF: Degrees of Freedom

Folded detrended flux time series for CatId 169461816, Planet candidate 2 and folded trapezoidal model light curve. Open ./planet-02/planet-search-and-model-fitting-results/trapezoidal-model-fit/0000000169461816-02-all-trapezoidal.fig

Zoomed folded detrended flux time series for CatId 169461816, Planet candidate 2 and folded trapezoidal model light curve. Open ./planet-02/planet-search-and-model-fitting-results/trapezoidal-model-fit/0000000169461816-02-all-trapezoidal-zoomed.fig

8.4 Validation Tests

The Centroid Test and Eclipsing Binary Discrimination Test are chi-squared hypothesis tests. For these tests, a significance of 100% favors a planet, while 0% indicates an unlikely planet.

8.4.1 Weak Secondary Test

Result	Value	Uncertainty	Units	Statistic in Sigmas	Significance (%)
Orbital Period	0.36311		days		
Transit Duration	0.5		hours		
Maximum MES	7.4				
Secondary Phase	0.18333		days		
Secondary MES	7.1				
Minimum Phase	0.23081		days		
Minimum MES	-5.5				
Median MES	-0.7				
MAD MES	3.0806				
Robust Statistic	7.0				
Secondary Depth	832.8	$9.9443e{+}01$	ppm		
Geometric Albedo	3.2	8.7374e + 00		0.2515	40.07
Planet Effective Temperature	7107	4.8508e + 03	Kelvin	0.7562	22.48

8.4.2 Eclipsing Binary Discrimination Test

Result	Value	Value in Sigmas	Significance (%)
Odd Even Transit Depth Comparison Statistic	3.0512e-01	0.5524	58.07
Longer Period Comparison Statistic	5.1475e-09	0.0001	0.01

8.4.3 Bootstrap Test

Result	Value
False Alarm Probability	6.0575e-09
Bootstrap Threshold for Desired PFA	9.1
MES Mean	0.19
MES Standard Deviation	1.26
Transit Count	74

8.4.4 Ghost Diagnostic Test

Result	Value	Significance (%)
Maximum MES	7.4	
SNR	8.2	
Core Aperture Statistic	6.8519e + 00	100.00
Halo Aperture Statistic	-6.3162e-01	26.38
Ratio of Core/Halo Aperture Statistics	-1.0848e+01	

8.4.5 Validation Test Figures

Planet 2 : Secondary MES vs. Phase 8 6 2 $\mathsf{MES}\,[\sigma]$ 0 -2 -4 -6 -0.1 -0.05 0.05 0.1 0.15 0.2 0 0.25 0.3 Phase [Days]

The primary event has been set to zero and both the max and min of the resulting MES vs. Phase are marked with a red star. The best matched pulse duration in hours is 0.5. The maximum secondary MES and corresponding phase are 7.1342 and 0.18333 days respectively. The minimum secondary MES and corresponding phase are -5.4794 and 0.23081 days respectively.

Open ./planet-02/report-summary/0000000169461816-02-weak-secondary-diagnostic.fig

Bootstrap results for target 169461816, planet 2. Cumulative sum of the probabilities (derived from the histogram of counts) from upper tail to the search transit threshold; false alarm probability is indicated by the star. The Gaussian equivalent threshold for this false alarm probability is 5.6981. The threshold on this distribution that achieves the same false alarm rate as a 7.1 sigma threshold on a Gaussian distribution is 9.1178. Open ./planet-02/bootstrap-results/0000000169461816-02-bootstrap-false-alarm.fig

Optical ghost diagnostic core aperture flux time series for target 169461816, planet candidate 2. The unwhitened time series is phase folded at the orbital period associated with the planet candidate and centered on the epoch of the first transit. The time series was first corrended against spacecraft engineering data, motion proxies, and/or cotrending basis vectors (CBVs) to remove systematic effects. Flux time series data represent the mean per pixel flux in the core or haloaperture; phase folded data points are shown in the figure with black dots. Binned and averaged phase folded flux values are marked with filled blue circles. The unwhitened transit model light curve is displayed in the figure with a red line. The value and significance of the core aperture correlation statistic are displayed in the figure title if the statistic was successfully computed.

Open ./planet-02/ghost-diagnostic-results/000000169461816-02-core-unwhitened-cotrended-zoomed-model.fig

Planet 2 : Cotrended Folded Halo Aperture Flux Time Series Correlation Statistic = -0.63, Significance = 26.38%

Optical ghost diagnostic halo aperture flux time series for target 169461816, planet candidate 2. The unwhitened time series is phase folded at the orbital period associated with the planet candidate and centered on the epoch of the first transit. The time series was first corrended against spacecraft engineering data, motion proxies, and/or cotrending basis vectors (CBVs) to remove systematic effects. Flux time series data represent the mean per pixel flux in the core or haloaperture; phase folded data points are shown in the figure with black dots. Binned and averaged phase folded flux values are marked with filled blue circles. The unwhitened transit model light curve is displayed in the figure with a red line. The value and significance of the halo aperture correlation statistic are displayed in the figure title if the statistic was successfully computed.

Open ./planet-02/ghost-diagnostic-results/000000169461816-02-halo-unwhitened-cotrended-zoomed-model.fig

9 Planet Candidate 3

9.1 Model Fitter: All Transits

Model Characteristic	Name			
Transit Model	mandel-agol_geom	mandel-agol_geometric_transit_model		
Limb Darkening Model	claret_tess_nonline	ar_limb_darkeni	ng_model	
TCE Parameter		Value	Units	
Trial Transit Pulse Durat	ion	0.5	hours	
Transit Epoch		1683.6900363	TJD	
Orbital Period		0.3630491	days	
Maximum SES		3.9		
Maximum MES		7.2		
Robust Statistic		7.4		
Chi Square Goodness of H	Fit Statistic (DoF)	674.0(730)		
Chi Square2 Statistic (Do	F)	33.2(53.5)		
Threshold for Desired PF.	A			

DoF: Degrees of Freedom

Parameter	Value	Uncertainty	Units
SNR	10.1		
Orbital Period	0.3631160	2.9733e-05	days
Transit Epoch	1683.6927495	9.4391e-04	BTJD
Impact Parameter	0.5372	7.1815e+00	
Planet Radius to Star Radius Ratio	0.0286531	2.1706e-02	
Semi-major Axis to Star Radius Ratio	3.9746	2.0098e+01	
Planet Radius	4.6644	$3.5396e{+}00$	Earth radii
Semi-major Axis	0.0113	8.3766e-04	AU
Effective Stellar Flux	33005.3765	5.0338e + 03	Goldilocks
Equilibrium Temperature	3438	1.3107e + 02	Kelvin
Stellar Density	6.3977	$9.7053e{+}01$	Solar density
Transit Depth	886	9.7844e + 01	ppm
Transit Duration	0.6232	2.6606e-01	hours
Transit Ingress Duration	0.0245	2.8394e-01	hours
Eccentricity	0.0000	0.0000e+00	
Peri Longitude	0.0000	0.0000e+00	degrees
Model Chi Square Statistic (DoF)	3376.7 (3963.6)		
Model Chi Square Goodness of Fit Statistic (DoF)	676.5(1181)		
Model Chi Square2 Statistic (DoF)	27.1(53)		

DoF: Degrees of Freedom

Flux time series for CatId 169461816, Planet candidate 3 in the unwhitened domain. For the data of Sector-14/TargetTableId-167, start BJD is 2458683. Transit event markers indicate the location of transits of the given planet candidate. All transits fit completed with full convergence. Open ./planet-o3/planet-search-and-model-fitting-results/all-transits-fit/000000169461816-03-all-unwhitened-14-167.fig

Folded flux time series for CatId 169461816, Planet candidate 3 in the whitened domain is plotted in black dots. Values are averaged into 1 cadence wide bins. The blue dots represent the averaged values of the folded flux time series; the red dots represent the averaged values of the folded model light curve of the all transits fit; the green dots are the averaged folded fit residuals, vertically offset for clarity. All transits fit completed with full convergence.

Open ./planet-03/planet-search-and-model-fitting-results/all-transits-fit/0000000169461816-03-all-whitened.fig

Folded flux time series for CatId 169461816, Planet candidate 3 in the whitened domain, zoomed on the transit. The flux data whose robust weights are larger/smaller than 0.1 are plotted in dark green/cyan dots, respectively. Values are averaged into 1 cadence wide bins. The blue dots represent the averaged values of the folded flux time series; the red dots represent the averaged values of the fitted model light curve of the all transits fit; the green dots are the averaged folded fit residuals, vertically offset for clarity. Magenta dots are the averaged values of the folded flux time series, with a phase shift of 0.5 relative to the blue dots, vertically offset for clarity. All transits fit completed with full convergence.

Impact	SNR	Model	Planet Radius	Uncert	Semi-major Axis	Uncert	Transit	Uncert	Transit	Uncert
Parameter		Chi Square	to Star Radius		to Star Radius		\mathbf{Depth}		Duration	
							(ppm)		(hours)	
0.10	10.3	4079.4	0.0276303	1.5174e-03	4.5847	3.2088e-01	864	9.4317e + 01	0.6242	4.4206e-02
0.30	10.2	4077.4	0.0278254	1.5295e-03	4.6100	3.0890e-01	865	$9.4581e{+}01$	0.5974	4.0570e-02
0.50	10.2	4077.1	0.0283749	1.5618e-03	4.2916	2.9046e-01	876	$9.5825e{+}01$	0.5893	4.0730e-02
0.70	10.2	4076.7	0.0293238	1.6553e-03	3.7177	2.9009e-01	886	$9.9422e{+}01$	0.5775	4.6876e-02
0.90	10.2	4083.9	0.0316518	1.8344e-03	2.4791	1.8790e-01	903	$1.0385e{+}02$	0.6105	5.2783e-02

9.2 Model Fitter: Reduced Parameter Fit Results

Highlighted row is the best reduced-parameter model fit.

Model chi squares of reduced parameter fits vs. impact parameter for CatId 169461816, Planet candidate 3. The fit result with the minimum chi square is marked with a dashed line in the plot.

Open ./planet-03/planet-search-and-model-fitting-results/reduced-parameter-fits/0000000169461816-03-reduced-fits-chi-square.fig

Ratios of planet radius to star radius of reduced parameter fits vs. impact parameter for CatId 169461816, Planet candidate 3. The fit result with the minimum chi square is marked with a dashed line in the plot.

```
Open ./planet-03/planet-search-and-model-fitting-results/reduced-parameter-fits/0000000169461816-03-reduced-fits-rp-over-rstar.fig
```


Ratios of semimajor axis to star radius of reduced parameter fits vs. impact parameter for CatId 169461816, Planet candidate 3. The fit result with the minimum chi square is marked with a dashed line in the plot.

Open ./planet-03/planet-search-and-model-fitting-results/reduced-parameter-fits/0000000169461816-03-reduced-fits-a-over-rstar.fig

9.3 Model Fitter: Trapezoidal Fit Results

Model Characteristic Name

Transit Modeltrapezoidal_modelLimb Darkening Model

TCE Parameter	Value	Units
Trial Transit Pulse Duration	0.5	hours
Transit Epoch	1683.6900363	TJD
Orbital Period	0.3630491	days
Maximum SES	3.9	
Maximum MES	7.2	
Robust Statistic	7.4	
Chi Square Goodness of Fit Statistic (DoF)	674.0(730)	
Chi Square2 Statistic (DoF)	33.2(53.5)	
Threshold for Desired PFA		

DoF: Degrees of Freedom

Parameter	Value	Uncertainty	Units
SNR	13.0		
Orbital Period	0.3630491		days
Transit Epoch	1683.6963456		BTJD
Transit Depth	1046		ppm
Transit Duration	0.8721		hours
Transit Ingress Duration	0.2779		hours
Model Chi Square Statistic (DoF)	6657.4 (4550)		

DoF: Degrees of Freedom

Folded detrended flux time series for CatId 169461816, Planet candidate 3 and folded trapezoidal model light curve. Open ./planet-03/planet-search-and-model-fitting-results/trapezoidal-model-fit/0000000169461816-03-all-trapezoidal.fig

Zoomed folded detrended flux time series for CatId 169461816, Planet candidate 3 and folded trapezoidal model light curve. Open ./planet-03/planet-search-and-model-fitting-results/trapezoidal-model-fit/0000000169461816-03-all-trapezoidal-zoomed.fig

9.4 Validation Tests

The Centroid Test and Eclipsing Binary Discrimination Test are chi-squared hypothesis tests. For these tests, a significance of 100% favors a planet, while 0% indicates an unlikely planet.

9.4.1 Weak Secondary Test

Result	Value	Uncertainty	Units	Statistic in Sigmas	Significance $(\%)$
Orbital Period	0.36305		days		
Transit Duration	0.5		hours		
Maximum MES	7.2				
Secondary Phase	0.093257		days		
Secondary MES	7.7				
Minimum Phase	0.062007		days		
Minimum MES	-5.5				
Median MES	-0.6				
MAD MES	3.3014				
Robust Statistic	8.0				
Secondary Depth	811.4	$9.8125e{+}01$	ppm		
Geometric Albedo	2.6	3.9924e + 00		0.4047	34.28
Planet Effective Temperature	6759	$2.5706e{+}03$	Kelvin	1.2905	9.84

9.4.2 Eclipsing Binary Discrimination Test

Result	Value	Value in Sigmas	Significance (%)
Odd Even Transit Depth Comparison Statistic	2.5160e-01	0.5016	61.60
Shorter Period Comparison Statistic	7.7160e-07	0.0009	0.07

9.4.3 Bootstrap Test

Result	Value
False Alarm Probability	1.3611e-08
Bootstrap Threshold for Desired PFA	9.1
MES Mean	0.19
MES Standard Deviation	1.26
Transit Count	74

9.4.4 Ghost Diagnostic Test

Result	Value	Significance (%)
Maximum MES	7.2	
SNR	10.1	
Core Aperture Statistic	4.7246e + 00	100.00
Halo Aperture Statistic	$5.4365e{+}00$	100.00
Ratio of Core/Halo Aperture Statistics	8.6906e-01	

9.4.5 Validation Test Figures

The primary event has been set to zero and both the max and min of the resulting MES vs. Phase are marked with a red star. The best matched pulse duration in hours is 0.5. The maximum secondary MES and corresponding phase are 7.731 and 0.093257 days respectively. The minimum secondary MES and corresponding phase are -5.4989 and 0.062007 days respectively.

Open ./planet-03/report-summary/0000000169461816-03-weak-secondary-diagnostic.fig

Bootstrap results for target 169461816, planet 3. Cumulative sum of the probabilities (derived from the histogram of counts) from upper tail to the search transit threshold; false alarm probability is indicated by the star. The Gaussian equivalent threshold for this false alarm probability is 5.5584. The threshold on this distribution that achieves the same false alarm rate as a 7.1 sigma threshold on a Gaussian distribution is 9.1178. Open ./planet-03/bootstrap-results/0000000169461816-03-bootstrap-false-alarm.fig

Planet 3 : Cotrended Folded Core Aperture Flux Time Series Correlation Statistic = 4.72, Significance = 100.00%

Optical ghost diagnostic core aperture flux time series for target 169461816, planet candidate 3. The unwhitened time series is phase folded at the orbital period associated with the planet candidate and centered on the epoch of the first transit. The time series was first corrended against spacecraft engineering data, motion proxies, and/or cotrending basis vectors (CBVs) to remove systematic effects. Flux time series data represent the mean per pixel flux in the core or haloaperture; phase folded data points are shown in the figure with black dots. Binned and averaged phase folded flux values are marked with filled blue circles. The unwhitened transit model light curve is displayed in the figure with a red line. The value and significance of the core aperture correlation statistic are displayed in the figure title if the statistic was successfully computed.

Open ./planet-03/ghost-diagnostic-results/000000169461816-03-core-unwhitened-cotrended-zoomed-model.fig

Planet 3 : Cotrended Folded Halo Aperture Flux Time Series Correlation Statistic = 5.44, Significance = 100.00%

Optical ghost diagnostic halo aperture flux time series for target 169461816, planet candidate 3. The unwhitened time series is phase folded at the orbital period associated with the planet candidate and centered on the epoch of the first transit. The time series was first cotrended against spacecraft engineering data, motion proxies, and/or cotrending basis vectors (CBVs) to remove systematic effects. Flux time series data represent the mean per pixel flux in the core or haloaperture; phase folded data points are shown in the figure with black dots. Binned and averaged phase folded flux values are marked with filled blue circles. The unwhitened transit model light curve is displayed in the figure with a red line. The value and significance of the halo aperture correlation statistic are displayed in the figure title if the statistic was successfully computed.

Open ./planet-03/ghost-diagnostic-results/000000169461816-03-halo-unwhitened-cotrended-zoomed-model.fig

Appendix A Planet Candidate 1

A.1 Model Fitter: All Transits

Robust weights distribution for CatId 169461816, Planet candidate 1. Top plot: all data points. Middle plot: all data points, folded per the fitted period and epoch. Bottom plot: all data points, folded and zoomed.

Open ./planet-01/planet-search-and-model-fitting-results/all-transits-fit/0000000169461816-01-all-robust-weights.fig

Fit residuals distribution for CatId 169461816, Planet candidate 1. Only the valid data points used to constrain the fit are shown here. A Gaussian fit to the histogram is shown in red.

Fit residuals distribution for CatId 169461816, Planet candidate 1. Top plot: all valid data. Bottom plot: valid data not used to constrain fit (due to distance from a transit). Gaussian fits to the histograms are shown in red.

Open ./planet-01/planet-search-and-model-fitting-results/all-transits-fit/0000000169461816-01-all-histo-all-and-unused.fig

A.2 Model Fitter: Odd & Even Transits

Parameter	Odd Transits Value	Odd Transits Uncertainty	Even Transits Value	Even Transits Uncertainty	Units	$\frac{\text{Difference}}{\ \text{Uncertainty}\ }$
SNR	5.6		7.0			
Orbital Period	0.3630459	4.8993e-05	0.3630967	4.0044 e-05	days	8.0346e-01
Transit Epoch	1683.6025698	1.5928e-03	1683.9659348	1.2825e-03	BTJD	1.3798e-01
Impact Parameter	0.3906	$2.9858e{+}01$	0.4780	1.2223e+01		2.7101e-03
Planet Radius to Star Radius Ratio	0.0265725	5.1269e-02	0.0296183	3.1455e-02		5.0639e-02
Semi-major Axis to Star Radius Ratio	4.1761	$5.3951e{+}01$	3.8052	$2.6683e{+}01$		6.1621e-03
Planet Radius	4.3257	8.3482e + 00	4.8215	$5.1251e{+}00$	Earth radii	5.0616e-02
Semi-major Axis	0.0113	8.3755e-04	0.0113	8.3763e-04	AU	8.8975e-04
Effective Stellar Flux	33013.8723	$5.0351e{+}03$	33007.7091	5.0341e + 03	Goldilocks	8.6562 e- 04
Equilibrium Temperature	3438	1.3108e + 02	3438	1.3108e+02	Kelvin	8.6562 e- 04
Stellar Density	7.4236	2.8772e + 02	5.6145	1.1811e+02	Solar density	5.8165e-03
Transit Depth	781	1.5038e + 02	958	1.4659e + 02	ppm	8.4207 e-01
Transit Duration	0.6389	5.4129e-01	0.6768	3.8156e-01	hours	5.7153e-02
Transit Ingress Duration	0.0197	5.8074e-01	0.0255	4.1227e-01	hours	8.0522e-03
Eccentricity	0.0000	0.0000e+00	0.0000	0.0000e+00		
Peri Longitude	0.0000	0.0000e+00	0.0000	0.0000e+00	degrees	
Model Chi Square Statistic (DoF)	4551.1 (5644.5)		4551.1 (5644.5)			

DoF: Degrees of Freedom

Folded flux time series for CatId 169461816, Planet candidate 1 in the whitened domain is plotted in black dots. Values are averaged into 1 cadence wide bins. The blue dots represent the averaged values of the folded flux time series; the red dots represent the averaged values of the folded model light curve of the odd/even transits fit; the green dots are the averaged folded fit residuals, vertically offset for clarity. Odd-even transits fit completed with full convergence. Open ./planet-o1/planet-search-and-model-fitting-results/odd-even-transits-fit/0000000169461816-01-odd-even-whitened.fig

Folded flux time series for CatId 169461816, Planet candidate 1 in the whitened domain, zoomed on the transit. The flux data whose robust weights are larger/smaller than 0.1 are plotted in dark green/cyan dots, respectively. Values are averaged into 1 cadence wide bins. The blue dots represent the averaged values of the folded flux time series; the red dots represent the averaged values of the fitted model light curve of the odd/even transits fit; the green dots are the averaged folded fit residuals, vertically offset for clarity. Magenta dots are the averaged values of the folded flux time series, with a phase shift of 0.5 relative to the blue dots, vertically offset for clarity. Odd-even transits fit completed with full convergence.

Open ./planet-01/planet-search-and-model-fitting-results/odd-even-transits-fit/0000000169461816-01-odd-even-whitened-zoomed.fig

Robust weights distribution for CatId 169461816, Planet candidate 1. Top plot: all data points. Middle plot: all data points, folded per the fitted period and epoch. Bottom plot: all data points, folded and zoomed.

Open ./planet-01/planet-search-and-model-fitting-results/odd-even-transits-fit/0000000169461816-01-odd-even-robust-weights.fig

Fit residuals distribution for CatId 169461816, Planet candidate 1. Only the valid data points used to constrain the fit are shown here. A Gaussian fit to the histogram is shown in red.

Fit residuals distribution for CatId 169461816, Planet candidate 1. Top plot: all valid data. Bottom plot: valid data not used to constrain fit (due to distance from a transit). Gaussian fits to the histograms are shown in red.

Open ./planet-01/planet-search-and-model-fitting-results/odd-even-transits-fit/0000000169461816-01-odd-even-histo-all-and-unused.fig

A.3 Eclipsing Binary Discrimination Test

Top-left: Diagnostic plot of Odd/Even Transit Depth Test for catId 169461816, planet 1. A significance level close to 1/0 favors a transiting planet/an eclipsing binary. Top-right: Diagnostic plot of Orbital Period Test for catId 169461816. Orbital periods of planet 1 and the planet with shorter period are compared. A significance level close to 1/0 favors a transiting planet/an eclipsing binary. Bottom-left: Diagnostic plot of Orbital Period Test for catId 169461816. Orbital period of Orbital Period Test for catId 169461816. Orbital period Test for catId 169461816. Orbital period are compared. A significance level close to 1/0 favors a transiting planet/an eclipsing binary. Bottom-left: Diagnostic plot of Orbital Period Test for catId 169461816. Orbital periods of planet 1 and the planet with longer period are compared. A significance level close to 1/0 favors a transiting planet/an eclipsing binary.

 $Open \ ./planet-01/binary-discrimination-test-results/000000169461816-01-eclipsing-binary-discrimination-tests.fig$

Appendix B Planet Candidate 2

B.1 Model Fitter: All Transits

Robust weights distribution for CatId 169461816, Planet candidate 2. Top plot: all data points. Middle plot: all data points, folded per the fitted period and epoch. Bottom plot: all data points, folded and zoomed.

Open ./planet-02/planet-search-and-model-fitting-results/all-transits-fit/0000000169461816-02-all-robust-weights.fig

Fit residuals distribution for CatId 169461816, Planet candidate 2. Only the valid data points used to constrain the fit are shown here. A Gaussian fit to the histogram is shown in red.

Fit residuals distribution for CatId 169461816, Planet candidate 2. Top plot: all valid data. Bottom plot: valid data not used to constrain fit (due to distance from a transit). Gaussian fits to the histograms are shown in red.

Open ./planet-02/planet-search-and-model-fitting-results/all-transits-fit/0000000169461816-02-all-histo-all-and-unused.fig

B.2 Model Fitter: Odd & Even Transits

Parameter	Odd Transits Value	Odd Transits Uncertainty	Even Transits Value	Even Transits Uncertainty	Units	$\frac{\text{Difference}}{\ \text{Uncertainty}\ }$
SNR	5.7		6.3			
Orbital Period	0.3630044	5.4182e-05	0.3630881	4.2363e-05	days	1.2174e + 00
Transit Epoch	1683.5148998	1.7081e-03	1683.8739388	1.3615e-03	BTJD	1.8500e+00
Impact Parameter	0.2336	7.2866e + 01	0.1465	8.4976e + 01		7.7761e-04
Planet Radius to Star Radius Ratio	0.0256091	6.4905 e-02	0.0274572	4.9365e-02		2.2663e-02
Semi-major Axis to Star Radius Ratio	4.0922	$6.8955e{+}01$	4.9465	$6.0096e{+}01$		9.3396e-03
Planet Radius	4.1688	1.0567e + 01	4.4697	$8.0385e{+}00$	Earth radii	2.2658e-02
Semi-major Axis	0.0113	8.3749e-04	0.0113	8.3761e-04	AU	1.4654e-03
Effective Stellar Flux	33018.9038	5.0358e + 03	33008.7519	5.0343e + 03	Goldilocks	1.4257 e-03
Equilibrium Temperature	3438	1.3109e + 02	3438	1.3108e + 02	Kelvin	1.4257e-03
Stellar Density	6.9870	3.5320e + 02	12.3340	$4.4955e{+}02$	Solar density	9.3528e-03
Transit Depth	737	1.4175e + 02	851	$1.4958e{+}02$	ppm	5.5238e-01
Transit Duration	0.6848	6.5099e-01	0.5746	3.9943e-01	hours	1.4426e-01
Transit Ingress Duration	0.0184	7.0808e-01	0.0159	4.3226e-01	hours	3.0296e-03
Eccentricity	0.0000	0.0000e+00	0.0000	0.0000e+00		
Peri Longitude	0.0000	0.0000e+00	0.0000	0.0000e+00	degrees	
Model Chi Square Statistic (DoF)	3268.3 (3882.3)		3268.3 (3882.3)			

DoF: Degrees of Freedom

Folded flux time series for CatId 169461816, Planet candidate 2 in the whitened domain is plotted in black dots. Values are averaged into 1 cadence wide bins. The blue dots represent the averaged values of the folded flux time series; the red dots represent the averaged values of the folded model light curve of the odd/even transits fit; the green dots are the averaged folded fit residuals, vertically offset for clarity. Odd-even transits fit completed with full convergence. Open ./planet-02/planet-search-and-model-fitting-results/odd-even-transits-fit/0000000169461816-02-odd-even-whitened.fig

Folded flux time series for CatId 169461816, Planet candidate 2 in the whitened domain, zoomed on the transit. The flux data whose robust weights are larger/smaller than 0.1 are plotted in dark green/cyan dots, respectively. Values are averaged into 1 cadence wide bins. The blue dots represent the averaged values of the folded flux time series; the red dots represent the averaged values of the fitted model light curve of the odd/even transits fit; the green dots are the averaged folded fit residuals, vertically offset for clarity. Magenta dots are the averaged values of the folded flux time series, with a phase shift of 0.5 relative to the blue dots, vertically offset for clarity. Odd-even transits fit completed with full convergence.

Open ./planet-02/planet-search-and-model-fitting-results/odd-even-transits-fit/0000000169461816-02-odd-even-whitened-zoomed.fig

Robust weights distribution for CatId 169461816, Planet candidate 2. Top plot: all data points. Middle plot: all data points, folded per the fitted period and epoch. Bottom plot: all data points, folded and zoomed.

Open ./planet-02/planet-search-and-model-fitting-results/odd-even-transits-fit/0000000169461816-02-odd-even-robust-weights.fig

Fit residuals distribution for CatId 169461816, Planet candidate 2. Only the valid data points used to constrain the fit are shown here. A Gaussian fit to the histogram is shown in red.

Fit residuals distribution for CatId 169461816, Planet candidate 2. Top plot: all valid data. Bottom plot: valid data not used to constrain fit (due to distance from a transit). Gaussian fits to the histograms are shown in red.

Open ./planet-02/planet-search-and-model-fitting-results/odd-even-transits-fit/0000000169461816-02-odd-even-histo-all-and-unused.fig

B.3 Eclipsing Binary Discrimination Test

Top-left: Diagnostic plot of Odd/Even Transit Depth Test for catId 169461816, planet 2. A significance level close to 1/0 favors a transiting planet/an eclipsing binary. Bottom-left: Diagnostic plot of Orbital Period Test for catId 169461816. Orbital periods of planet 2 and the planet with longer period are compared. A significance level close to 1/0 favors a transiting planet/an eclipsing binary.

Open ./planet-02/binary-discrimination-test-results/000000169461816-02-eclipsing-binary-discrimination-tests.fig

Appendix C Planet Candidate 3

C.1 Model Fitter: All Transits

Robust weights distribution for CatId 169461816, Planet candidate 3. Top plot: all data points. Middle plot: all data points, folded per the fitted period and epoch. Bottom plot: all data points, folded and zoomed.

Open ./planet-03/planet-search-and-model-fitting-results/all-transits-fit/0000000169461816-03-all-robust-weights.fig

Fit residuals distribution for CatId 169461816, Planet candidate 3. Only the valid data points used to constrain the fit are shown here. A Gaussian fit to the histogram is shown in red.

Fit residuals distribution for CatId 169461816, Planet candidate 3. Top plot: all valid data. Bottom plot: valid data not used to constrain fit (due to distance from a transit). Gaussian fits to the histograms are shown in red.

Open ./planet-03/planet-search-and-model-fitting-results/all-transits-fit/0000000169461816-03-all-histo-all-and-unused.fig

C.2 Model Fitter: Odd & Even Transits

Parameter	Odd Transits Value	Odd Transits Uncertainty	Even Transits Value	Even Transits Uncertainty	Units	$\frac{\text{Difference}}{\ \text{Uncertainty}\ }$
SNR	7.8		6.7			
Orbital Period	0.3630549	4.0562 e- 05	0.3631649	3.8798e-05	days	1.9604e + 00
Transit Epoch	1683.6929640	1.2865e-03	1684.0545842	1.1913e-03	BTJD	8.5312e-01
Impact Parameter	0.7529	3.2967e + 00	0.5378	$1.0473e{+}01$		1.9594e-02
Planet Radius to Star Radius Ratio	0.0296502	2.3605e-02	0.0302923	3.3546e-02		1.5653 e-02
Semi-major Axis to Star Radius Ratio	3.7339	$1.9726e{+}01$	3.9599	2.9206e + 01		6.4126e-03
Planet Radius	4.8267	3.8487e + 00	4.9312	5.4653e + 00	Earth radii	1.5636e-02
Semi-major Axis	0.0113	8.3756e-04	0.0113	8.3773e-04	AU	1.9256e-03
Effective Stellar Flux	33012.7826	5.0349e + 03	32999.4460	5.0329e + 03	Goldilocks	1.8734e-03
Equilibrium Temperature	3438	1.3108e + 02	3438	1.3107e+02	Kelvin	1.8734e-03
Stellar Density	5.3061	8.4094e + 01	6.3252	$1.3995e{+}02$	Solar density	6.2418e-03
Transit Depth	886	1.5366e + 02	991	$1.4251e{+}02$	ppm	5.0159e-01
Transit Duration	0.5360	3.8863e-01	0.6268	4.0567 e-01	hours	1.6164 e-01
Transit Ingress Duration	0.0348	4.2632e-01	0.0260	4.4047 e-01	hours	1.4285e-02
Eccentricity	0.0000	0.0000e+00	0.0000	0.0000e+00		
Peri Longitude	0.0000	0.0000e+00	0.0000	0.0000e+00	degrees	
Model Chi Square Statistic (DoF)	3382.4 (3961.7)		3382.4 (3961.7)			

DoF: Degrees of Freedom

Folded flux time series for CatId 169461816, Planet candidate 3 in the whitened domain is plotted in black dots. Values are averaged into 1 cadence wide bins. The blue dots represent the averaged values of the folded flux time series; the red dots represent the averaged values of the folded model light curve of the odd/even transits fit; the green dots are the averaged folded fit residuals, vertically offset for clarity. Odd-even transits fit completed with full convergence. Open ./planet-o3/planet-search-and-model-fitting-results/odd-even-transits-fit/0000000169461816-03-odd-even-whitened.fig

Folded flux time series for CatId 169461816, Planet candidate 3 in the whitened domain, zoomed on the transit. The flux data whose robust weights are larger/smaller than 0.1 are plotted in dark green/cyan dots, respectively. Values are averaged into 1 cadence wide bins. The blue dots represent the averaged values of the folded flux time series; the red dots represent the averaged values of the fitted model light curve of the odd/even transits fit; the green dots are the averaged folded fit residuals, vertically offset for clarity. Magenta dots are the averaged values of the folded flux time series, with a phase shift of 0.5 relative to the blue dots, vertically offset for clarity. Odd-even transits fit completed with full convergence.

Open ./planet-03/planet-search-and-model-fitting-results/odd-even-transits-fit/0000000169461816-03-odd-even-whitened-zoomed.fig

Robust weights distribution for CatId 169461816, Planet candidate 3. Top plot: all data points. Middle plot: all data points, folded per the fitted period and epoch. Bottom plot: all data points, folded and zoomed.

Open ./planet-03/planet-search-and-model-fitting-results/odd-even-transits-fit/0000000169461816-03-odd-even-robust-weights.fig

Fit residuals distribution for CatId 169461816, Planet candidate 3. Only the valid data points used to constrain the fit are shown here. A Gaussian fit to the histogram is shown in red.

Fit residuals distribution for CatId 169461816, Planet candidate 3. Top plot: all valid data. Bottom plot: valid data not used to constrain fit (due to distance from a transit). Gaussian fits to the histograms are shown in red.

Open ./planet-03/planet-search-and-model-fitting-results/odd-even-transits-fit/0000000169461816-03-odd-even-histo-all-and-unused.fig

C.3 Eclipsing Binary Discrimination Test

Top-left: Diagnostic plot of Odd/Even Transit Depth Test for catId 169461816, planet 3. A significance level close to 1/0 favors a transiting planet/an eclipsing binary. Top-right: Diagnostic plot of Orbital Period Test for catId 169461816. Orbital periods of planet 3 and the planet with shorter period are compared. A significance level close to 1/0 favors a transiting planet/an eclipsing binary.

Open ./planet-03/binary-discrimination-test-results/000000169461816-03-eclipsing-binary-discrimination-tests.fig

Appendix D Alerts

Time	Severity	Message
1740.0094	warning	Not excluding transits that overlap those of another candidate in S14 (target=1, catId=169461816, planet=1, targetTable=167, component=generateDvDifferenceImages)
1740.0094	warning	Not excluding transits that overlap those of another candidate in S14 (target=1, catId=169461816, planet=2, targetTable=167, component=generateDvDifferenceImages)
1740.0094	warning	Not excluding transits that overlap those of another candidate in S14 (target=1, catId=169461816, planet=3, targetTable=167, component=generateDvDifferenceImages)
1740.0116	warning	Centroid offsets figure cannot be generated because there are no valid centroid offsets (target=1, catId=169461816, planet=1, component=generateDvDifferenceImages)
1740.0116	warning	Centroid offsets figure cannot be generated because there are no valid centroid offsets (target=1, catId=169461816, planet=2, component=generateDvDifferenceImages)
1740.0116	warning	Centroid offsets figure cannot be generated because there are no valid centroid offsets (target=1, catId=169461816, planet=3, component=generateDvDifferenceImages)